

DICOM for Small Animal Pre-clinical Imaging & Whole Slide Digital Pathology

DAVID A. CLUNIE PIXELMED PUBLISHING, LLC

Disclosures

- Editor of the DICOM Standard (NEMA contract)
- Owner of PixelMed Publishing, LLC
- Consulting for AGMednet, Bioclinica, BK Medical,
 Bracken, Canfield, Carestream, Hologic, Imago, Lunit
- Supported by NCI Leidos BOA 29XS219 Task Order #05

Why Standards?

- Consistency
- Reproducibility
- • •
- Interoperability

Interoperability

"the ability of two or more systems or components to **exchange** information and to **use** the information that has been exchanged"

IEEE Standard Computer Dictionary: A Compilation of IEEE Standard Computer Glossaries. 1990

JOHN PALFREY AND URS GASSER

Interop

The PROMISE and PERILS of

HIGHLY INTERCONNECTED
SYSTEMS

- layers: technology, data, human, institutional
- consumer empowerment
- privacy, security
- competition, homogeneity, innovation
- efficiencies, complexity
- by design
- over time
- architectures

Meyer-Ebrecht D. [Electronic Archival System for X-Rays Images - Work proposal for a research project in the years 1974 and 1975] Elektronisches Archivierungssystem für Röntgenbilder – Arbeitsvorschlag für ein Forschungsprojekt in den Jahren 1974 und 1975. Hamburg, Germany: Philips Research Lubs; 1973 Oct.

DICOM and Radiology Modality

DICOM and Slide Scanner

Deconstructed Enterprise PACS

Single Vendor Black Box

Cloud Distribution and Analysis

Why DICOM?

- Enormous experience in radiology and cardiology
- 34 years since ACR-NEMA PS3 Standard (1985)
- A consensus of user and industry representatives. later adopted by ISO as ISO 12052
- 80 million CT studies per year in US (CBS News, 2015) all DICOM
- Huge supporting infra-structure for both DICOM file format, protocol and services
- All manner of products essentially commoditized: scanners, archives, workstations, viewers, PACS, toolkits for products, testing, analysis, research
- Both commercial and free, closed and open source tools
- Conformance and interoperability testing venues (e.g., IHE Connectathons)
- Modality agnostic e.g., XR, MR, NM also Visible Light, esp. Ophthalmology, Endoscopy
- Application agnostic human, veterinary, small animal research, non-destructive testing (esp. aerospace and nuclear power), security (esp. baggage scanning)
- Emphasis on reliable, consistent, standard metadata (common data elements, value sets)
- Core standard for images in The Cancer Imaging Archive (TCIA)
- Mappings, e.g., Biomedical Research Integrated Domain Group (BRIDG ISO 14199)

Why not DICOM?

- More effort than most trivial file formats toolkits are generally required
- Complexity is implicit in the use case more than the "format" per se harder problems require more effort and discipline to be interoperable
- Population of metadata takes effort is it worth that effort?
- Traditional DICOM network transport protocols are unique, though TCP/IP based
 mitigated through more recent use of HTTP (WADO) using XML, JSON
 metadata
- Information model not always a perfect match for pre-clinical animal identification
- Pixel data encoding not a perfect match for WSI virtual microscopy questions of size limits and tile access – multi-frame tiles are a hack (like TIFF), but are workable
- Legacy of use of proprietary (albeit mostly TIFF-based) formats for WSI why change if downstream users/apps are willing to cope?
- DICOM Conformance is not a panacea claims of support are limited to query, storage and retrieval, worklists, etc., but NOT necessarily visualization (but DICOM does <u>enable</u> viewers and analytic tools)

Status quo for Small Animal Imaging

- Re-use of human scanners, therefore human DICOM images
- Many dedicated animal devices also can produce DICOM
- Not too bad, but ...
- Identification difficulties, e.g., "mouse hotel" but one ID field
- Description difficulties, e.g., animal species, strain, model
- Hodgepodge of proprietary file formats for exotic modalities
- Absence of animal metadata -> fragile linkage to out of band sources (database, spreadsheets, mouse management systems)
- When decoupled from environment, lose contextual data
- Often managed as files on filesystem, rather than in "PACS"

DICOM for Animals – 2001 to 2019

- 2001 Sup 53 Content Mapping Resource species of subject
- 2006 CP 643 Add veterinary identification tags (breeds)
- 2009 CP 919 Add orientation for quadrupeds
- 2009 CP 922 Add anatomy, view codes and acquisition context for veterinary use
- 2013 WG 30 Small Animal Imaging formed (NCI initiative)
- 2015 CP 1457 Identification of groups of pre-clinical research small animal subjects
- 2015 CP 1470 Small animal anatomy for pre-clinical research
- 2015 CP 1472 Additional responsible persons
- 2015 CP 1473 Transverse positioning of pre-clinical research small animal subjects
- 2015 Sup 187 Preclinical Small Animal Imaging Acquisition Context
- 2016 CP 1478 Identification of species and strain of pre-clinical research small animal subjects
- 2017 CP 1619 Add source mouse strain and genetic modifications for homograft to exogenous substances, and add genetic modifications to patient

Species encoding in DICOM

Table CID 7454. Animal Taxonomic Rank Values

Coding Scheme Designator	Code Value	Code Meaning	SNOMED-RT ID	UMLS Concept Unique ID	ITIS TSN
SCT	337915000	Homo sapiens	<u>L-85003</u>	C0086418	180092
SCT	388626009	Felis	<u>L-000F9</u>	<u>C0524517</u>	180586
SCT	448169003	Felis catus (domestic cat)	<u>L-00376</u>	<u>C0007450</u>	183798
SCT	388445009	Equus	<u>L-000A9</u>	<u>C1265527</u>	180689
SCT	35354009	Equus caballus (domestic horse)	L-8A102	C0019944	180691
SCT	388254009	Ovis	L-8C3FD	<u>C0036945</u>	180709
SCT	125099002	Ovis aries (domestic sheep)	L-8C336	C1123019	<u>552475</u>
SCT	388393002	Sus	L-8B1FB	<u>C1265533</u>	180721
SCT	78678003	Sus scrofa	<u>L-8B100</u>	<u>C1135183</u>	180722
SCT	388249000	Capra	L-8C3FB	<u>C1265549</u>	180714
SCT	125097000	Capra hircus (domestic goat)	<u>L-8C306</u>	<u>C0018019</u>	180715
SCT	388490000	Canis	<u>L-881FC</u>	<u>C0524516</u>	180595
SCT	36855005	Canis lupus	<u>L-88121</u>	<u>C1510418</u>	180596
SCT	448771007	Canis lupus familiaris (domestic dog)	<u>L-88124</u>	<u>C0012984</u>	726821
SCT	388168008	Bos	<u>L-8BA18</u>	<u>C1265540</u>	183837
SCT	107007004	Bovinae	<u>L-8B9F9</u>	<u>C0325235</u>	<u>552332</u>
SCT	34618005	Bos taurus (domestic cow)	<u>L-8B941</u>	<u>C1140701</u>	183838
SCT	447482001	Mus genus	<u>L-87830</u>	<u>C0026809</u>	180365
SCT	447612001	Mus musculus (House mouse)	<u>L-87831</u>	C0025914	180366
ITIS_TSN	180278	Peromyscus leucopus (American white-footed mouse)			180278

Strain encoding in DICOM

- For example, a FVB/N mouse with a Tg(MMTV-Erbb2*)NDL2-5Mul transgene might be identified as:
 - Strain Description (0010,0212) = "FVB/N-Tg(MMTV-Erbb2*)NDL2-5Mul"
 - Strain Nomenclature (0010,0213) = "MGI_2013"
 - Genetic Modifications Sequence (0010,0221)
 - >Genetic Modifications Description (0010,0222) = "Tg(MMTV-Erbb2*)NDL2-5Mul"
 - >Genetic Modifications Nomenclature (0010,0223) = "MGI_2013"
 - >Genetic Modifications Code Sequence (0010,0229)

 - >>Coding Scheme Designator = "MGI"
 - >>Code Meaning = "Tg(MMTV-Erbb2*)NDL2-5Mul"

- Patient ID (0010,0020) = "Inv234_Exp_56_Group78"
- Issuer of Patient ID (0010,0021) = "MyMouseLab"
- Group of Patients Identification Sequence (0010,0027)
- >Patient ID (0010,0020) = "Inv234_Exp_56_Group78_Mouse01"
- >Issuer of Patient ID (0010,0021) = "MyMouseLab"
- Subject Relative Position in Image (0010,0028) = 1\1\1
- ...
- >Patient ID (0010,0020) = "Inv234_Exp_56_Group78_Mouse06"
- >Issuer of Patient ID (0010,0021) = "MyMouseLab"
- Subject Relative Position in Image (0010,0028) = 3\2\1

- Patient ID (0010,0020) = "Inv234_Exp_56_Group78_Mouse04"
- Issuer of Patient ID (0010,0021) = "MyMouseLab"
- Source Patient Group Identification Sequence (0010,0026)
- >Patient ID (0010,0020) = "Inv234_Exp_56_Group78"
- >Issuer of Patient ID (0010,0021) = "MyMouseLab"

- Patient ID (0010,0020) = "Inv234_Exp_56_Group78_Mouse04"
- Issuer of Patient ID (0010,0021) = "MyMouseLab"
- Source Patient Group Identification Sequence (0010,0026)
- >Patient ID (0010,0020) = "Inv234_Exp_56_Group78"
- >Issuer of Patient ID (0010,0021) = "MyMouseLab"

Animal Positioning – Transverse

- Things that affect image interpretation and quantitative analysis
- E.g., imaging of an animal in a hybrid PET-CT system where metabolic state matters
- Example use case involves an animal that:
 - lives in an individually ventilated home cage with several other animals in the same cage
 - is (briefly) transported (in its home cage) with its cage mates to the imaging facility, without heating, with an appropriate lid
 - is removed from its home/transport cage for preparation for imaging, involving insertion of a tail vein cannula, performed on an electrically heated pad
 - is induced by (a) placement in an induction chamber with more concentrated volatile anesthetic, or (b) intraperitoneal injection of Ketamine mixture
 - is placed in a PET-CT compatible imaging sled/carrier/chamber for imaging (of one animal at a time), with anesthesia with Isoflurane and Oxygen as the carrier gas, and heated with an electric pad regulated by feedback from a rectal probe
 - is removed for recovery in a separate cage

1.10	Animal handling during specified phase	
1.10.1	Phase of animal handling	Imaging procedure
1.10.2	DateTime Started	yyyymmddhhss
1.10.3	DateTime Ended	yyyymmddhhss
1.10.4	Animal housing	
1.10.4.1	Housing manufacturer	Acme Inc
1.10.4.2	Housing unit product name	Multimodal Mouse Chamber
1.10.5	Heating conditions	
1.10.5.1	Heating	Electric heating pad
1.10.5.1	Feedback temperature regulation	Yes
1.10.5.2	Temperature sensor device component	Rectal temperature
1.10.5.3	Equipment Temperature	37 C

Table TID 8101. Preclinical Small Animal Image Acquisition Context

	NL	Rel with Parent	VT	Concept Name	VM	Req Type	Condition	Value Set Constraint
1			CONTAINER	EV (127001, DCM, "Preclinical Small Animal Imaging Acquisition Context")	1	М		Root node
2	>	HAS CONCEPT MOD	INCLUDE	DTID 1204 "Language of Content Item and Descendants"	1	М		
3	>	HAS OBS CONTEXT	INCLUDE	DTID 1001 "Observation Context"	1	М		
5	>	CONTAINS	INCLUDE	DTID 8110 "Biosafety Conditions"	1	U		
6	٧	CONTAINS	CONTAINER	EV (127005, DCM, "Animal handling during specified phase")	1-n	U		
7	%	HAS CONCEPT MOD	CODE	EV (127006, DCM, "Phase of animal handling")	1	М		DCID 634 "Phase of Animal Handling"
8	%	CONTAINS	DATETIME	EV (111526, DCM, "DateTime Started")	1	U		
9	>>	CONTAINS	DATETIME	EV (111527, DCM, "DateTime Ended")	1	U		
10	>>	CONTAINS	INCLUDE	DTID 8121 "Animal Housing"	1	U		
11	>>	CONTAINS	INCLUDE	DTID 8122 "Animal Feeding"	1-n	U		
12	>>	CONTAINS	INCLUDE	DTID 8140 "Heating Conditions"	1	U		
13	>>	CONTAINS	INCLUDE	DTID 8150 "Circadian Effects"	1	U		
14	>>	CONTAINS	INCLUDE	DTID 8170 "Physiological Monitoring Performed During Procedure"	1	U		
15	>	CONTAINS	INCLUDE	DTID 8130 "Anesthesia"	1	U		
16	>	CONTAINS	INCLUDE	DTID 9002 "Medication, Substance, Environmental Exposure"	1	U		\$ContainerConcept = EV (10160-0, LN, "History Of Medication Use")
								\$CodeConcept = EV (111516, DCM, "Medication Type")
								\$Route = DCID 11 "Route of Administration"

Table CID 634. Phase of Animal Handling

Coding Scheme Designator	Code Value	Code Meaning	SNOMED-RT ID	UMLS Concept Unique ID
DCM	<u>127101</u>	In home cage		
DCM	127102	During transport		
DCM	127103	Staging prior to imaging		
DCM	127104	Preparation for imaging		
SCT	241687005	Anesthesia induction	P1-C0012	<u>C0473960</u>
SCT	363679005	Imaging procedure	P0-0099A	<u>C0011923</u>
UMLS	<u>C0002908</u>	Anesthesia recovery period		<u>C0002908</u>

Status quo post-DICOM updates

- No/almost no adoption by vendors of small animal equipment
- Obviously no adoption by vendors of human equipment
- But ...
- Opportunity to post-process DICOM headers to add missing data by merging from other sources
- Then subsequent distribution (e.g., via TCIA) achieves greater degree of interoperability
- Ongoing TCIA query changes (index animal metadata in database),
 e.g., species is mouse
- Will use for Patient Derived Models Repository (PDMR) project, e.g., identification of split mouse-specific images, strain of mouse, identifier of model (source of xenograft)

Add missing animal metadata

Broker "improves" DICOM object with database metadata

Status quo for WSI

- Hodgepodge of proprietary file formats, e.g., SVS
- Some (Big-)TIFF-based (good), some not (bad)
- Some with extensions to TIFF (e.g., JPEG 2000 compression)
- Some disclosed publicly, some not
- Usually used with vendor-supplied viewer or proprietary SDK
- Possibly readable by open source or 3rd party (OpenSlide, OME)s
- Limited integration of scanners with Anatomical Laboratory Information Systems (APLIS), if at all, perhaps requiring expensive customization
- No metadata: fragile linkage to contextual data (patient, slide, handling, staining) by filename or scanned slide identifier only
- When decoupled from environment (APLIS, proprietary PACS), lose contextual data

DICOMWSI - 2005 to 2019

- 1999 Sup 15 Visible Light including Microscopy
- 2005 WG 26 got to work on WSI etc.
- 2006 IHE Anatomic Pathology Domain
- 2008 Sup 122 Specimen Module (identify, describe)
- 2008 IHE Anatomic Pathology Workflow
- 2010 Sup 145 Whole Slide Microscopic Image IOD
- seven years of silence ...
- 2017 Ist premarket approval for primary diagnostic use
- 2017 Ist WG 26 Digital Pathology Connectathon (PV)
- 2019 five Connectathons so fars (PathInfo, ECDP/NDP, PV)
- 20XX IHE Acquisition Workflow profile (APLIS integration)

DICOMWG 26 WSI Connectathons Participation to date

	PV'17	Pl'18	ECDP'18	PV'18	ECDP'19
AidPath	View		Archive, View		
Corista		Analyze			
Gestalt				Archive, View	
Neagen				Archive, View	Archive, View
PathCore	Archive, View	Archive, View		Archive, View	
Sectra		View	View	View	
3DHistech					Scan
Hamamatsu		Scan	Scan		Scan
Leica	Scan	Scan		Scan	
Motic				Scan	
Philips	Scan		Scan	Scan	Scan
Roche	Scan	Scan	Scan	Scan	Scan

DICOMWSI – What and How

- File format for:
 - whole slide images (tiled pyramid)
 - single fields slide microscopy
 - gross microscopy
- File contains:
 - compressed pixels (JPEG or JPEG 2000)
 - metadata identifying AND descriptive
- Protocol for sending and receiving, etc.
- Other stuff like workflow, annotation, segmentation, structured reports, ...

How digital slides are stored in a pyramid structure.

Wang Y, Williamson KE, Kelly PJ, James JA, Hamilton PW (2012) SurfaceSlide: A Multitouch Digital Pathology Platform. PLOS ONE 7(1): e30783. https://doi.org/10.1371/journal.pone.0030783 http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0030783

DICOMWSI: Why tiled pyramids?

- Goal is simplicity of access simulating a microscope
- Zoom and pan
- Tiles (frames): allow access to rectangular sub-regions of each resolution layer (without loading entire huge object)
- Pyramid: entire highest resolution layer is very large, so storing lower magnification layers (for faster zooming) takes negligible extra space
- Works around DICOM single frame size limitations (64k x 64k): no change to underlying DICOM encoding, no change to existing DICOM toolkits and archives
- Do need services for metadata (index: which tile is which frame) and frame-level retrieval – WADO-RS

DICOMWSI – What next?

- Color management
 - color normalization
 - color consistency ICC profiles
 - services for application of ICC profiles to simplify (Internet browser based)
 viewers
- Workflow management
 - provision of identification and specimen preparation
- Annotations
 - input ("hot spots") and output from analysis algorithms
 - DICOM Segmentations
 - DICOM Structured Reports
 - ? something new in DICOM that scales to millions of nuclei, membranes, etc.

No ICC Profile Applied

With ICC Profile Applied

Wen et al. A methodology for texture feature-based quality assessment in nucleus segmentation of histopathology image. JPI. 2017.

Annotation – Granularity

- Patient (Animal)/Case
- Imaging Study
- Series/Acquisition
- Image
- Frame (pixel data array at one place in space/time/...)
- Region ("of interest" ROI)
- Single point (label each/every voxel/pixel)

Can all be encoded in DICOM Structured Report (SR)

Segmentations and Parametric Maps

- Per-voxel encoding of numeric or label values
- "Images", but not just "pretty pictures"
 - modality-specific or secondary capture; single or multi-frame
- Segmentations
 - binary, probability, fractional occupancy
 - multiple segments (multiple labels)
- Parametric maps
 - pixel value "means something" real world value map (RWVM)
 - integers +/- (linear) rescaling to floats (usable by any viewer)
 - "derived" images of modality-specific SOP Class
 - recently added floating point voxels and SOP Class (Sup 172)
- Leave "fusion" (superimposition) to application
 - e.g., PET SUV on top of CT
 - can use Blending Presentation State to specify what to fuse

Harvard Brain Atlas NRRD Label Map converted to DICOM Segmentation

Meyer P T et al. J Neurol Neurosurg Psychiatry 2003;74:471-478

Conclusion

- DICOM is maturing, both for pre-clinical small animal research and whole slide imaging
- Can use DICOM to leverage existing off-the-shelf commercial and research storage, viewing and analytic tools that salready support DICOM
- Can use DICOM in new developments, e.g., by writing wrappers and brokers using existing toolkits to create appropriate project-specific objects
- Can use DICOM to serve infrastructure needs for completely different modalities, radiological and pathological
- Not just for input can store quantitative output in DICOM too
- Ideal for co-clinical imaging, because same tools can be used for both human and animal indexing, storage, analysis and quantifications