Motivation

- Need to distribute results for review
- Create with multiple tools in different formats
- Reviewers without access to original tool
- Measurement technique comparisons
- Imaging bio-marker development/testing
- Image-based clinical trials, esp. oncology
- Change in measurements over time
- Clinical practice for individual patients

Results Characteristics

- What is recorded?
 - measurements distance, volume, density, etc.
 - coordinates what region on image measured
- Context?
 - identification of subject (patient), lesion, etc.
 - identification of reader
 - identification of technique
 - position in time (change over time, no change)

Results Organization

- Single object per measurement
- Single object for all measurements at one time
- Single object per reader per time point
- Single object per reader all time points
- Single object per image with all measurements for all readers

•

Use-Cases

- QIBA CT Volumetry 1B Round 2
 - lung cancer volume measurement
 - multiple independent readers
 - two time points
 - some cases no change, some with change
 - volume & automatically erived distance
 - standard DICOM SR and DICOM Segmentation format
 - clinical trials results information model
 - organized as one object per lesion per reader
 - reading tool is not distributable for review

Use-Cases

- QIBA CT Volumetry 1A
 - phantom lung nodules differing size and shape
 - multiple independent readers
 - one time point
 - two different (incompatible) reading tools used
 - distance
 - proprietary format
 - one object per image containing multiple readers & lesions
 - volume
 - variant of DICOM RT Structure Set
 - one object per reader per lesion
 - reading tools are not distributable for review

Hierarchical Model

- Subject
 - Reader
 - Time Point
 - –Lesion
 - »Region (-> link to image coords)
 - Measurement (e.g., Volume)

Hierarchical Model

```
Subject = 0001
 - Reader = 1
      • Time Point = 2010/06/01
           - Lesion = 1
                » Volume = 355 mm3
           - Lesion = 2
                » Volume = 3896 mm3
      • Time Point = 2011/07/01
           - Lesion = 1
                » Volume = 471 mm3
           - Lesion = 2
                » Volume = 3801 mm3
 - Reader = 2
```

One Annotation Per File

```
Subject = 0001
 - Reader = 1
      • Time Point = 2010/06/01
           - Lesion = 1
                » Volume = 355 mm3
           - Lesion = 2
                » Volume = 3896 mm3
        Time Point = 2011/07/01
           - Lesion = 1
                » Volume = 471 mm3
           - Lesion = 2
                » Volume = 3801 mm3
 - Reader = 2
```

One Time Point Per File

```
Subject = 0001
    Reader = 1
      • Time Point = 2010/06/01
           - Lesion = 1
                » Volume = 355 mm3
           - Lesion = 2
                » Volume = 3896 mm3
      • Time Point = 2011/07/01
           - Lesion = 1
                » Volume = 471 mm3
           - Lesion = 2
                » Volume = 3801 mm3
 - Reader = 2
```

One Reader per Subject Per File

```
Subject = 0001
    Reader = 1
        Time Point = 2010/06/01
           - Lesion = 1
                » Volume = 355 mm3
           - Lesion = 2
                » Volume = 3896 mm3
      • Time Point = 2011/07/01
           - Lesion = 1
                » Volume = 471 mm3
           - Lesion = 2
                » Volume = 3801 mm3
 - Reader = 2
```

Tabular Presentation

Subject	Reader	Time Point	Lesion	Volume mm3
0001	Reader 1	2010/06/01	1	355
0001	Reader 2	2010/06/01	1	375
0001	Reader 1	2010/06/01	2	3896
0001	Reader 2	2010/06/01	2	4764
0001	Reader 1	2011/07/01	1	471
0001	Reader 2	2011/07/01	1	289
0001	Reader 1	2011/07/01	2	3801

Tabular Presentation

- Can be sorted by different columns
- Easy to add derived computations
 - e.g., % difference from mean volume
- Exportable to spreadsheet tools (e.g., Excel)
- Exportable to statistical tools (e.g., R)
- Easy to feed selected columns to chart tools
- Cells and rows can be hyperlinked to images
 - e.g., hyperlink a volume to the ROI outline

Structured vs. Unstructured

- Structured input defines individual elements
 - measurements are recorded
 - as opposed to recalculated from coordinates each time
 - measurements & units distinct & related to image
 - coordinates linked to measurement
 - different types of measurement coded (not free text)
 - individual context elements distinct
 - e.g., patient, lesion, reader encoded separately
- Unstructured annotations
 - user enters free text (e.g., "Reader 1 Lesion 1)
 - text and coordinates linked, or
 - text and coordinates co-located but not linked

Results Formats

- DICOM Structured Reports
 - general purpose hierarchical data format
 - primitives for codes, measurements, coordinates
 - references to images, segmentations
 - needs a "template" to define information model
 - no widely adopted standard templates for oncology quantitative measurements over time
 - author has defined template for internal use in contract research, and has reused it for QIBA

Results Formats

- DICOM Segmentations
 - rasterized (pixel array) of values matching image
 - encoding of lesions
 - Binary which voxels are included in lesion
 - Probability maps probability voxel is included
 - encoding of "label maps"
 - E.g., atlas of tissue types corresponding to voxels
 - does not contain measurements
 - intended to be referenced from a DICOM SR

DICOM RT Structure Sets

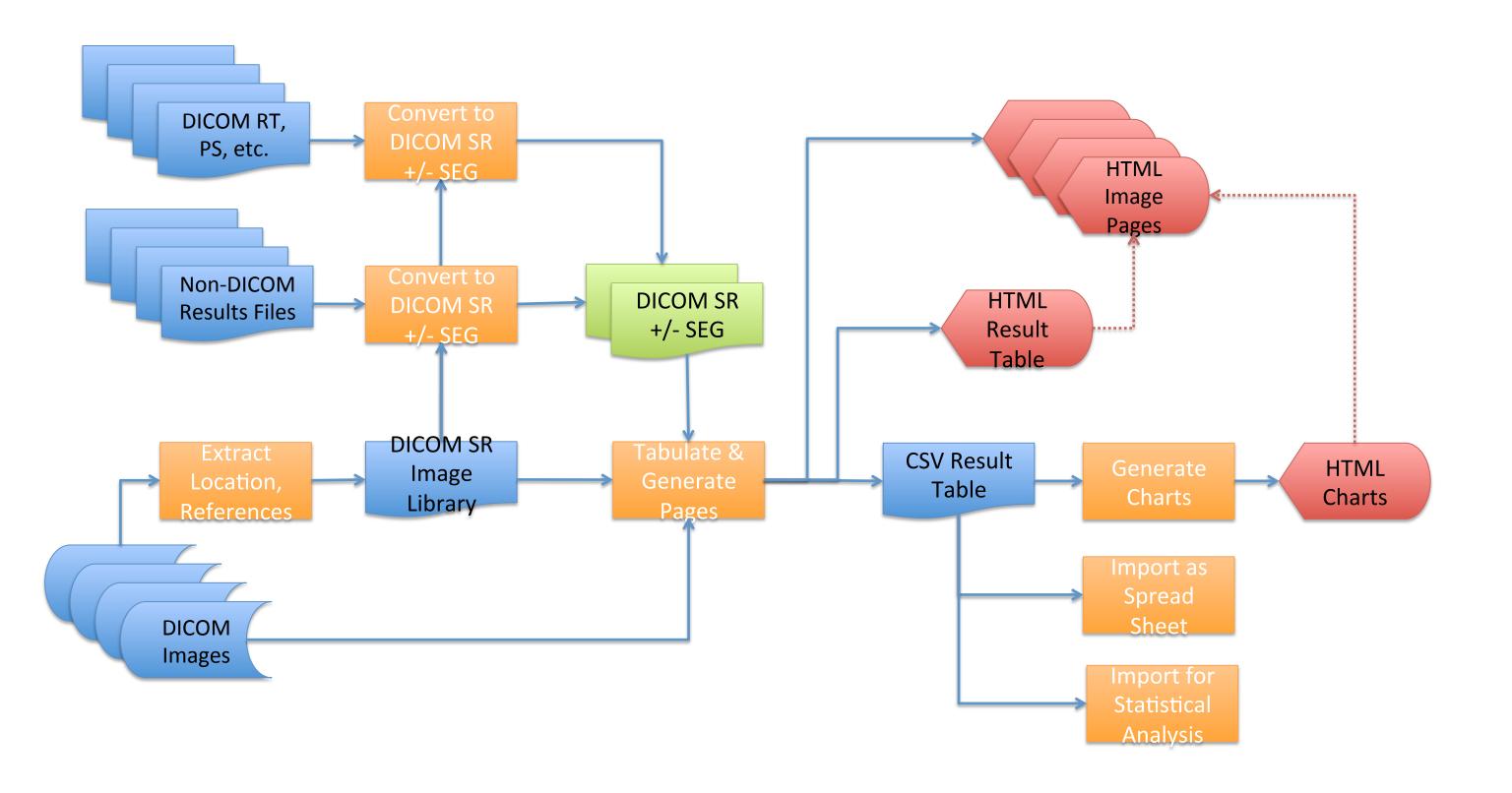
- Developed for and long history of use with Radio-Therapy Planning applications
- Generic mechanism for 3D contours
 - set of coplanar iso-contours
 - 3D patient-relative coordinates
- Image co-ordinates
 - often 1:1 correspondence of 3 coordinate with original image slices and voxels (though not required)
- Measurements
 - very limited, if any, measurements in file
 - recalculated on re-loading
 - could be referenced from a DICOM SR (though unusual)

DICOM Presentation States

- Intended for rendering, not interpretation
- Commonly implemented in PACS for simple annotation capture
- Unstructured
 - text and graphics are not semantically linked
 - text is free text, not coded, and no structured measurements
 - with discipline entering text, structured content can be parsed from free text retrospectively

Process Flow

- Create DICOM SR
 - that conform to a basic template
 - subject/reader/time point lesion/measurement
- Tabulate results
 - include hyperlinks to rendered images with ROIs
 - compute any derived statistics
- Generate charts from tables
 - e.g., scatter plots, waterfall plots

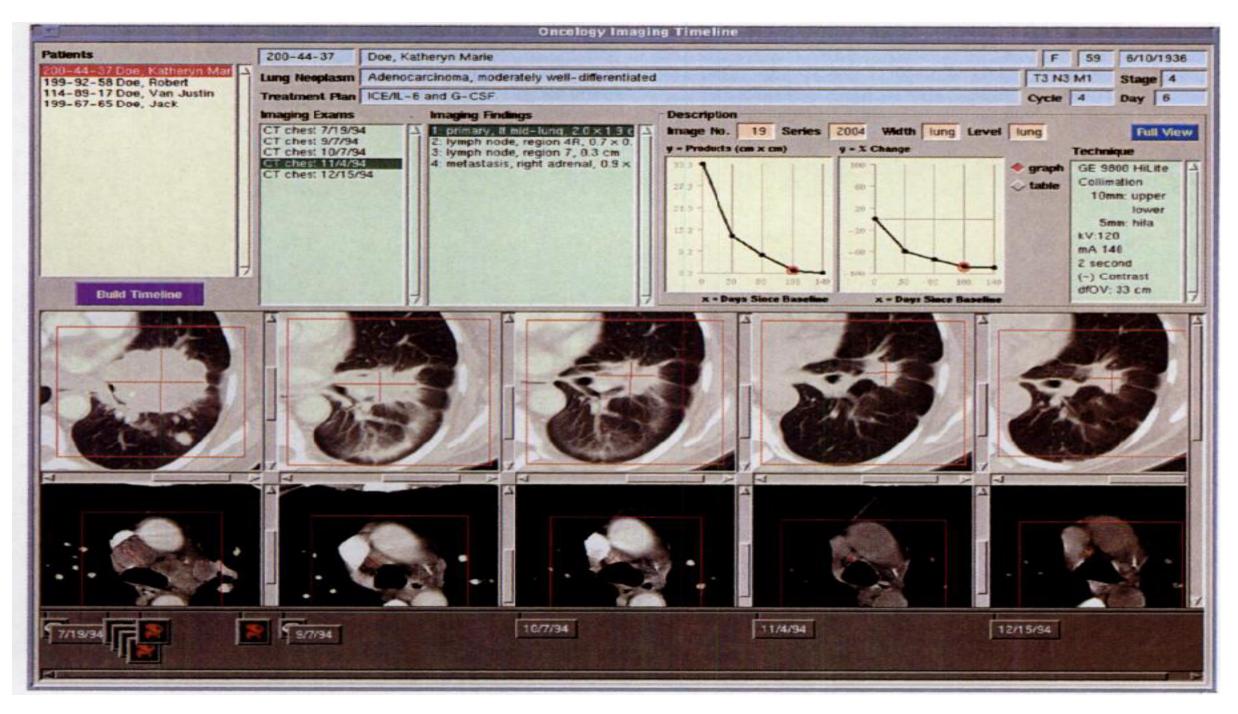

Process Flow

ROIs

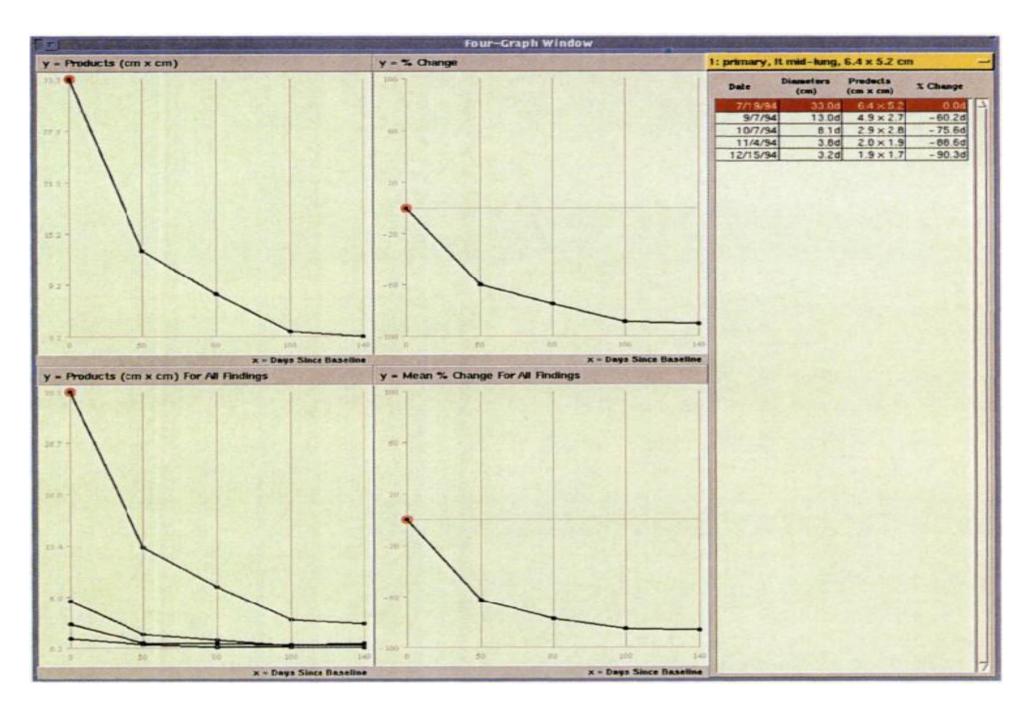
- if SR references segmentation, use it
- if SR contains coordinates (2D or 3D), use them
- if not, convert coordinates to SR coordinates
 - e.g., RT Structure Set 3D coordinates to SR 2D
- if not, convert raster to segmentation
 - e.g., LIDC Max tool PMAP to DICOM SEG

Image Library

- extract image characteristics for re-use
- e.g., position, orientation, spacing, UIDs
- store in SR Image Library template
- saves repeating this (reading image headers) many times



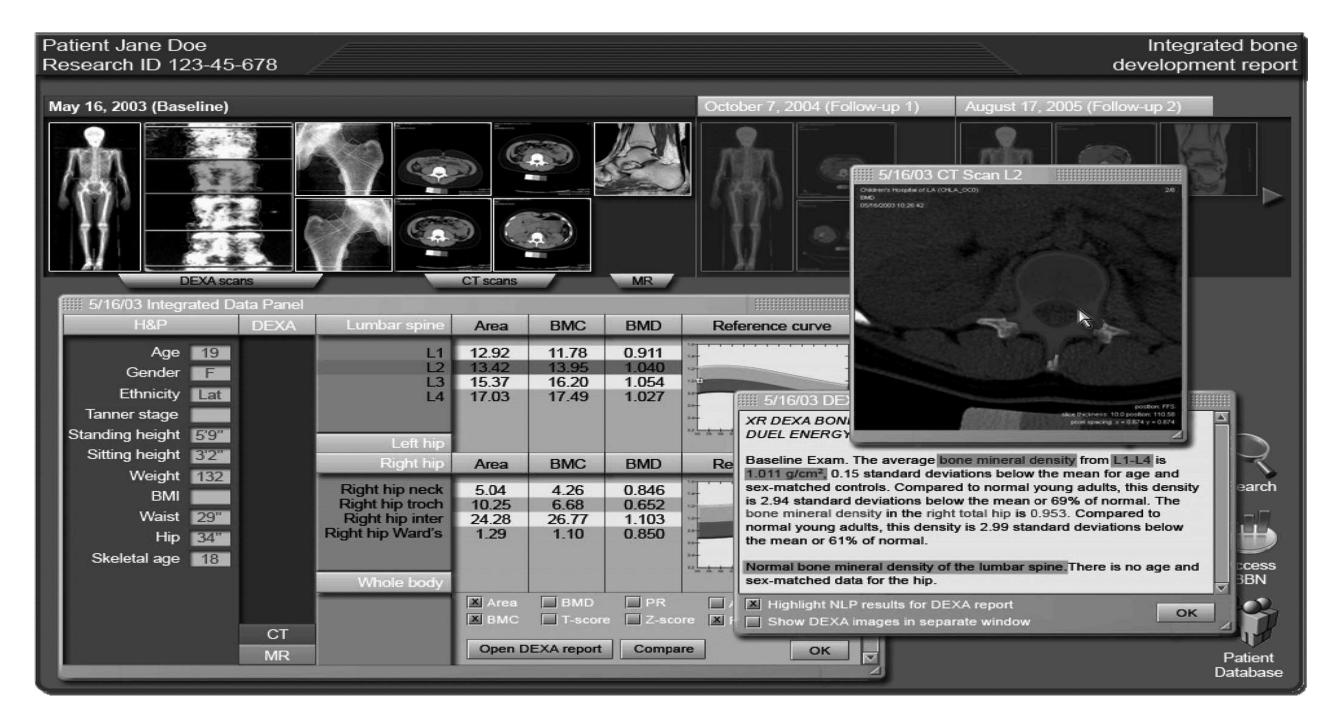
Earlier Work by Others


- Aberle 1996 Thoracic Oncology Imaging Timeline (OITL)
 - regions of interest defined during reporting
 - change in lesion size over time for single patient
 - table of lesion size
 - graphs of size change
 - visualization of size change

http://radiographics.rsna.org/content/16/3/669

Aberle 1996 - OITL

Aberle 1996 - OITL



Earlier Work by Others

- Bui 2007 TimeLine
 - more generalized, configurable approach
 - data access and integration
 - data mapping, reorganization and clustering
 - hierarchical problem-centric views
 - emphasis on temporal chronologies & clustering
 - adaptable format mapping methods

http://dx.doi.org/10.1109/TITB.2006.884365

Bui 2007 - TimeLine

Earlier Work by Others

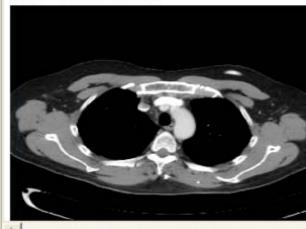
- Levy 2007 LesionViewer
 - serial oncology studies
 - anatomical summary of lesion location
 - direct navigation to visualization of location
 - temporal abstraction of lesion behavior

http://dx.doi.org/10.1109/TITB.2006.884365

Levy 2007 - LesionViewer

View Scan Images

View Disease Summary


View Raw Data

Select New Patient

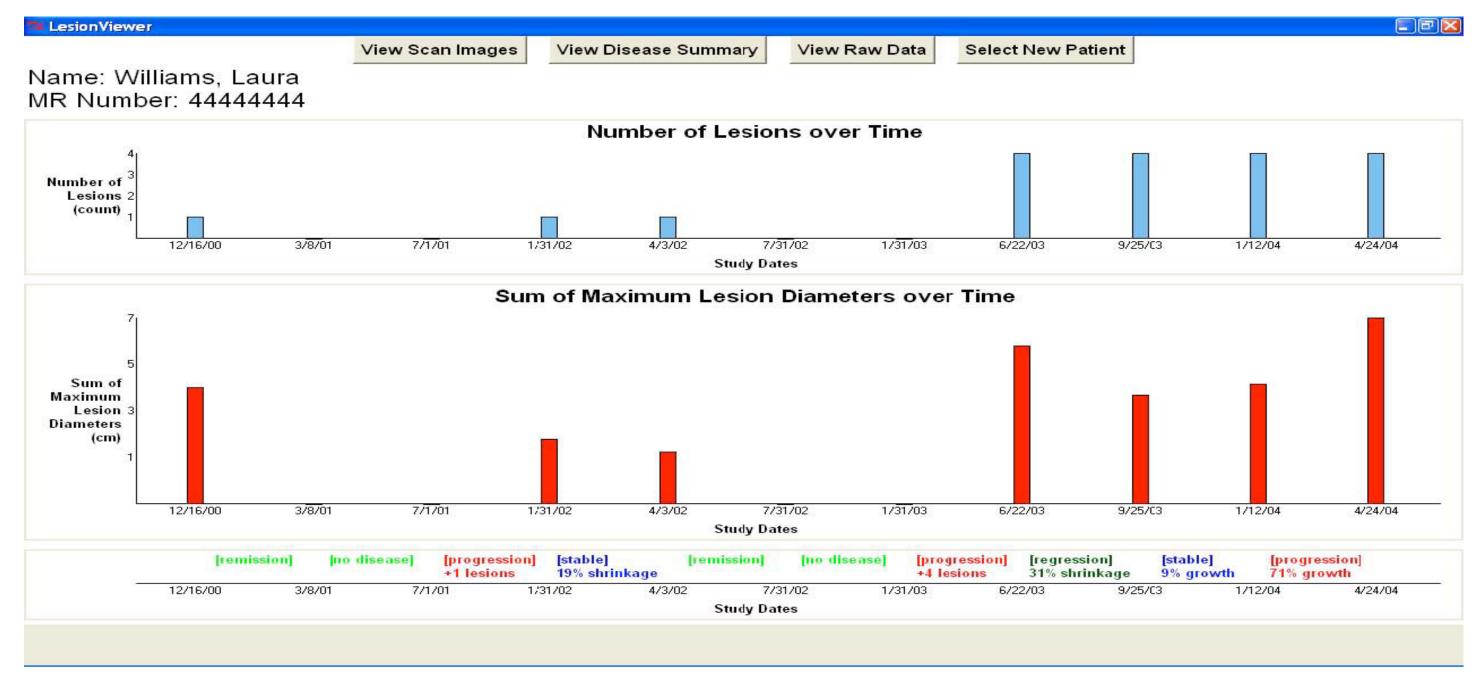
Name: Wilson, Mark MR Number: 5555555


Pulmonary Nodule Dimension: 0.7cm

Date: 08/3/06
CT Chest, Abdomen and Pelvis

Lesion ID: 2
Location: Upper Lobe of Right Lung
Description: Pulmonary Nodule
Dimension: 0.8cm

Pulmonary Nodule Dimension: 0.8cm



Date: 10/10/06 CT Chest, Abdomen and Pelvis

Pulmonary Nodule Dimension: 1.0cm

Levy 2007 - LesionViewer

Earlier Work by Others

- AVT 2009 Algorithm Validation Toolkit
 - NCI caBIG in vivo Imaging Workspace project
 - Measurement Variability Tookit (MVT) component
 - tabulation and charting
 - interface with R statistics package
 - only supports proprietary NCI AIM format

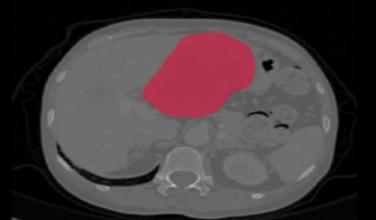
Disclosure: author was involved in AVT RFP and sub-contractor to Siemens Corporate Research on AVT use-case development and testing

LAM ISOH

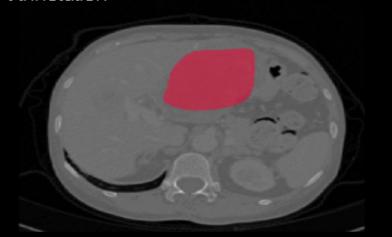
Computation Results

Competation Results					
Subject Name	Rel VolDifferen	Surf Distance (Avera	Surface Distance(RMS)[Surface Distance (Maxim	Volume Overlap[%]
LTS_IMG01	1.33747	0.33584	0.517345	2	93.38901
LTS_IMG02	78.8215	7.56008	8.99904	18.2481	9.685699
LTS_IMG03	11.4208	0.560206	0.852003	2.6543	70.1677
LTS_IMG04	5.70567	1.76527	2.77575	13.3707	77.781296
LTS_IMG05	24.5516	2.60058	3.84065	13.1668	67.9256
LTS_IMG06	8.13259	0.592667	0.894234	3.15362	78.9365
LTS_IMG07	48.2725	8.57166	10.012	26.0819	47.2082
LTS_IMG08	44.4414	7.37036	8.67253	22.3928	47.052
LTS_IMG09	97.8516	2.70283	3.91401	13.2583	49.0714
LTS_IMG10	25.8335	1.66703	2.21645	7.30861	69.5749
Mean	34.6369	3.37275	4.2694	12.1635	61.0792
SD	32.6547	3.19619	3.63071	8.41635	23.6128
CV	0.942774	0.94765	0.850403	0.691934	0.386592

Outliers Plotting


Relative VolumeDifference: Top 25% Surface Distance(RMS): Top 25% Volume Overlap: Bottom 25%

 LTS_IMG02
 LTS_IMG02
 LTS_IMG02


 LTS_IMG07
 LTS_IMG07
 LTS_IMG07

 LTS_IMG08
 LTS_IMG08
 LTS_IMG08

Norminal GT

Annotation

AVT

Statistics Analysis

Methods:	Add		Custom	Del		
Comparison to be Analyzed			Statistical Method			
All Measurements		Mean				
All Measurements		SD				
All Measurements		CV				

Outlier Analysis

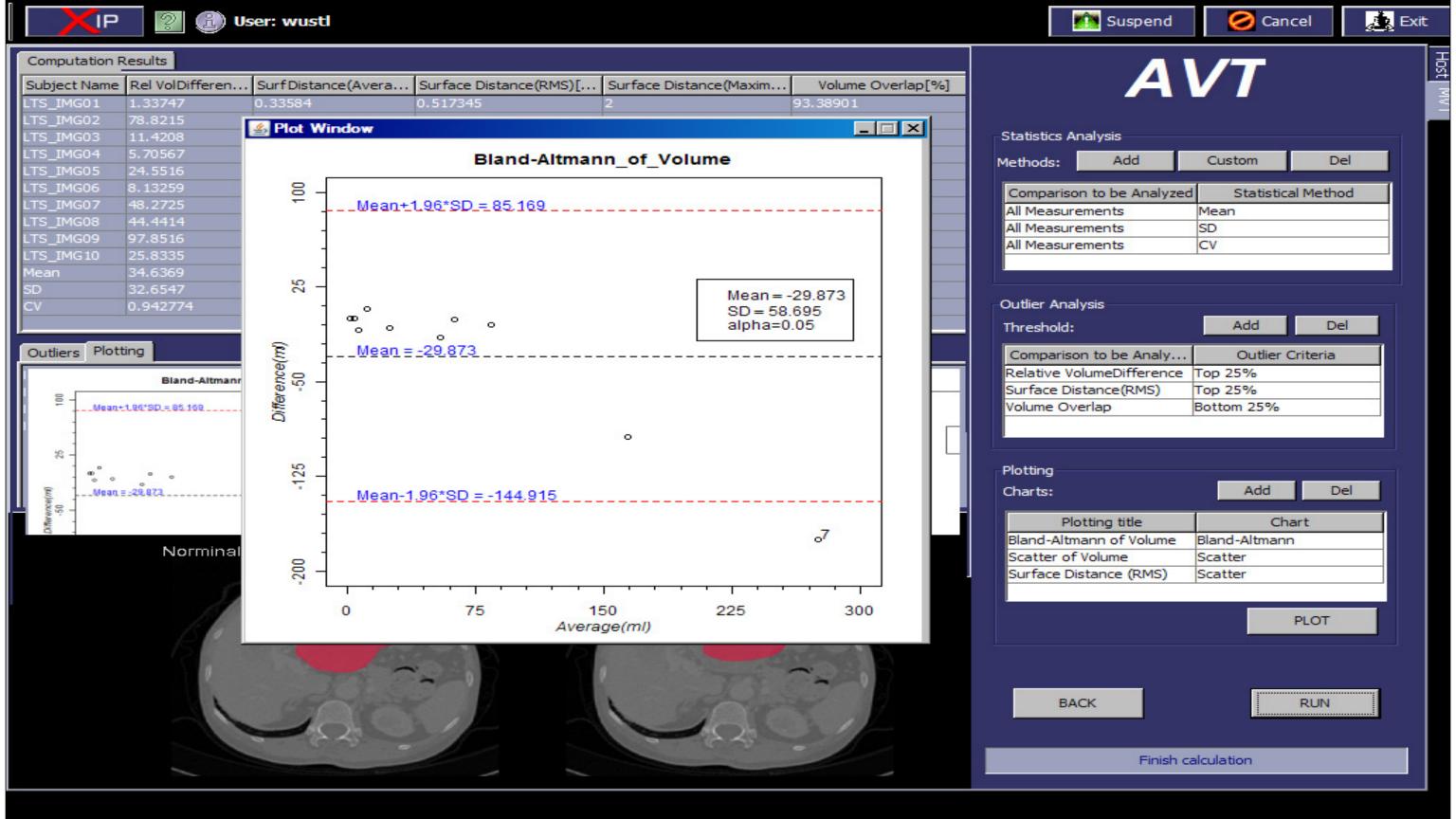
Add	Del
Outlier C	riteria
Top 25%	
Top 25%	(C)
Bottom 25%	·
	-

Plotting

Charts:	-1				
		na	1	•	
	_			_	۰

Plotting title	Chart
Bland-Altmann of Volume	Bland-Altmann
Scatter of Volume	Scatter
Surface Distance (RMS)	Scatter

Add


PLOT

Del

BACK

RUN

Finish calculation

